EXERCISES [MAI 1.6]

GEOMETRIC SEQUENCES

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a) $u_{1}=10, r=2$
(b) 5120
(c) 10230
(d) $10 \times 2^{n-1}\left(=5 \times 2^{n}\right)$
(e) $n=12$
2. (a) $u_{1}=10, r=0.5$
(b) 0.0195
(c) 19.98
(d) $10 \times 0.5^{n-1}\left(=20 \times 0.5^{n}\right)$
(e) $n=6$
3. (a) $\frac{54}{18}=\frac{162}{54}=\frac{486}{162} \quad(=3)$
(b) (i) $r=3$

$$
u_{n}=18 \times 3^{n-1}
$$

(ii) $18 \times 3^{n-1}=1062882$ $n=11$
4. (a) $6,12,24$
(b) $\quad \sum_{n=1}^{3}\left(3 \times 2^{n}\right)=6+12+24=42$
(c) $\quad \sum_{n=1}^{12}\left(3 \times 2^{n}\right)=24570$.
5. (a) $\frac{a}{8}=\frac{1}{2} \Leftrightarrow a=4$

OR
$\frac{2}{a}=\frac{1}{2} \Leftrightarrow a=4$
(b) $8\left(\frac{1}{2}\right)^{7}=0.0625$
(c) $\frac{8\left(\left(\frac{1}{2}\right)^{12}-1\right)}{\frac{1}{2}-1}=16.0(3$ s.f $)(=4095 / 256)$
6. (a) $0.5\left(\frac{1}{2}\right)$
(b) (i) $a=4$ (ii) $b=1$
(c) $\frac{16\left(1-0.5^{n}\right)}{(1-0.5)}=31.9375$

$$
n=9
$$

7. (a) $28=7 r^{2}$
$r=2$
(b) 114681
8. (a) $r=\frac{36}{108}\left(\frac{1}{3}\right)$
(b) $u_{1}\left(\frac{1}{3}\right)^{7}=36$

$$
u_{1}=78732
$$

(c) $118096=\frac{78732\left(1-\left(\frac{1}{3}\right)^{k}\right)}{\left(1-\frac{1}{3}\right)}$

$$
k=10
$$

9. (a) $-\frac{1800}{3000}=-0.6$
(b) $u_{10}=3000(-0.6)^{9}=-30.2$ (accept the exact value -30.233088)
(c) $S=1863.66$
10. $2 \times 1.05^{n-1}>500$ so $1.05^{n-1}>250$

METHOD A: Trial and error;
The smallest integer that satisfies the inequality is $n=115$. Then $u_{115}=521$
METHOD B: By using GDC SolveN or Graphical solution
The smallest integer that satisfies the inequality is $n=115$. Then $u_{115}=521$
METHOD C: Using logarithms;
$n-1>\frac{\log 250}{\log 1.05} \Leftrightarrow n-1>113.1675 \ldots$... so $n=115$. Then $u_{115}=521$
11. (a) 2
(b) 80
(c) 5115
(d) 9
(e) 1280
12. (a) 0.5
(b) 31.25
(c) 999.023
(d) 7
(e) 7.8125
13. (a) $u_{4}=u_{1} r^{3} \Leftrightarrow \frac{1}{81} r^{3}=\frac{1}{3} \Leftrightarrow r=3$
(b) $\frac{\frac{1}{81}\left(3^{n}-1\right)}{2}>40 ; \Leftrightarrow n>7.9888 \ldots \quad$ So $n=8$
(c) if $n=7, \mathbf{S}_{7}=13.49 \ldots$; if $n=8, \mathbf{S}_{8}=40.49 \ldots$ which is >40
14. (a) $u_{1} r^{4}=324 \Leftrightarrow u_{1} r=12 \Leftrightarrow r^{3}=27 \Leftrightarrow r=3$
(b) $4 \times 3^{9}=78732$ or $12 \times 3^{8}=78732$
(c) $4 \times 3^{k-1}>2000$ $k>6$, So $k=7$
15. (a) $r=3, u_{1}=5$
(b) $r=\frac{1}{3}, u_{1}=2657205$
(c) $\quad r=3, u_{1}=5$ OR $r=-3, u_{1}=-5$
16. (a) $\frac{x}{5}=\frac{45}{x} \Leftrightarrow x^{2}=225 \Leftrightarrow x=15$ or $x=-15$
(b) if $x=15$, then $y=135$, if $x=-15$, then $y=-135$
17. (a) $2 k-k=k+60-2 k \Leftrightarrow 2 k=60 \Leftrightarrow k=30$
(b) $\frac{2 k}{k}=\frac{k+60}{2 k} \Leftrightarrow 2=\frac{k+60}{2 k} \Leftrightarrow 4 k=k+60 \Leftrightarrow 3 k=60 \Leftrightarrow k=20$
(c) For $k=30$ the sequence is $30,60,90$ (arithmetic with $d=30$)

For $k=20$ the sequence is $20,40,80$ (geometric with $r=2$)
18. $1-a=b-1$ and $b=a^{2} \Leftrightarrow a^{2}+a-2=0 \Leftrightarrow a=-2, b=4$
19. (a) $u_{11}=u_{1}+10 d \Leftrightarrow-16+10 d=39 \Leftrightarrow 10 d=55 \Leftrightarrow d=5.5$
(b) $u_{3}=u_{1} r^{2} \Leftrightarrow u_{1} r^{2}=12$

$$
\begin{aligned}
& u_{5}=u_{1} r^{4} \Leftrightarrow u_{1} r^{4}=\frac{16}{3} \\
& r^{2}=\frac{\left(\frac{16}{3}\right)}{12}=\frac{16}{36}=\frac{4}{9} \Leftrightarrow r=\frac{2}{3}
\end{aligned}
$$

20. (a) $u_{96}=u_{1}+95 d=0+95 \times 12=1140$
(b) $6 r^{5}=16 d \Leftrightarrow 6 r^{5}=16 \times 12 \Leftrightarrow 6 r^{5}=192$
(c) $r^{5}=32 \Leftrightarrow r=2$
(d) $0+(n-1) \times 12=6 \times 2^{n-1} \Leftrightarrow n=2$ or $n=3$
(Indeed, the $2^{\text {nd }}$ term of each sequence is 12 , the $3^{\text {rd }}$ term of each sequence is 24)

PROBLEMS

21. (a) $r=\frac{8320}{8000} \Leftrightarrow r=1.04$
(b) Fees $=8000(1.04)^{6}=10122.55$ USD (USD not required)
(c) Total $=\frac{8000\left(1.04^{8}-1\right)}{1.04-1}=73713.81$ USD (USD not required)

Financial penalty (FP) for no 2 dp applies in parts (b) and (c)
22. (a) (i) 2 minutes +6 seconds +6 seconds $=2$ minutes 12 seconds (or 2.2 minutes)
(ii) $2(1.05)^{2}=2.205$
(b) $\mathrm{S}_{10}=\frac{2\left(1.05^{10}-1\right)}{(1.05-1)}=25.2$ minutes (or 25 minutes 12 seconds)
(c) the common difference for John is 6 seconds $=0.1$ minutes
$S_{10}=\frac{10}{2}(2 \times 2+9 \times 0.1)=24.5$ minutes
(or 24 minutes 30 seconds)
23. (a) $r=\frac{2500}{2000}=1.25$
(b) $\mathrm{S}_{6}=\frac{2000\left(1.25^{6}-1\right)}{1.25-1}=22517.57813 \ldots \ldots . .=22518$ (to the nearest dollar)
24. (a) Let the population at the end of 1999 be x.
$\frac{44100}{x}=\frac{x}{40000} \Leftrightarrow x=42000$
(b) $r=\frac{44100}{42000}=1.05$
$u_{n}=u_{1} r^{n-1}$

METHOD A

Assume that u_{1} if for 1992 and $u_{5}=40000$ is for 1996
$40000=u_{1}(1.05)^{4}$
$u_{1}=32908$ (or 32900 to 3 s.f.)

METHOD B

For 4 years before 1996 we divide 40000 by $(1.05)^{4}$
$\frac{40000}{(1.05)^{4}}=32908$

B. Paper 2 questions (LONG)

25. (a) $r=\frac{360}{240}=\frac{240}{160}=\frac{3}{2}=1.5$
(b) 2002 is the $13^{\text {th }}$ year.
$u_{13}=160(1.5)^{13-1}=20759$ (Accept 20760 or 20800.)
(c) $5000=160(1.5)^{n-1}$
$\frac{5000}{160}=(1.5)^{n-1} \Rightarrow n=9.49 \Rightarrow 10^{\text {th }}$ year $\Rightarrow 1999$
OR
Using a gdc recursion with $u_{1}=160, u_{k+1}=\frac{3}{2} u_{k}, u_{9}=4100, u_{10}=6150$ So 1999
(d) $S_{13}=160\left[\frac{1.5^{13}-1}{1.5-1}\right]=61958$ (Accept 61960 or 62000$)$
(e) Nearly everyone would have bought a portable telephone so there would be fewer people left wanting to buy one.
OR Sales would saturate.
26. (a) (i) $r=-2$
(ii) $u_{15}=-3(-2)^{14}=-49152($ accept -49200$)$
(b) (i) $2,6,18$
(ii) $r=3$
(c) $\frac{x+1}{x-3}=\frac{2 x+8}{x+1} \Leftrightarrow x^{2}+2 x+1=2 x^{2}+2 x-24 \Leftrightarrow x^{2}=25 \Leftrightarrow x=5$ or $x=-5$

So $x=-5$
(d) (i) $-8,-4,-2$
(ii) $r=\frac{1}{2}$
27. (a) $\frac{1-3^{n}}{1-3}=29524 \Leftrightarrow n=10$.
(b) Common ratio is $\frac{1}{3},(0.333(3 s . f)$.
(c) $\frac{1-\left(\frac{1}{3}\right)^{10}}{1-\frac{1}{3}}=1.50$ (3s.f.)
(d) Both $\left(\frac{1}{3}\right)^{10}$ and $\left(\frac{1}{3}\right)^{1000}$ (or those numbers divided by $2 / 3$) are 0 when corrected to 3 s.f., so they make no difference to the final answer.
Notes: Accept any valid explanation
(e) The sequence given is $\mathrm{G}_{1}+\mathrm{G}_{2}$

The sum is $29524+1.50=29525.5$
28. (a) $1024 r^{3}=128 \Leftrightarrow r^{3}=\frac{1}{8} \quad \Leftrightarrow r=\frac{1}{2}=0.5$
(b) $1024 \times 0.5^{10}=1$
(c) $S_{8}=\frac{1024\left(1-\left(\frac{1}{2}\right)^{8}\right)}{1-\frac{1}{2}}=2040$
(d) $\frac{1024\left(1-\left(\frac{1}{2}\right)^{n}\right)}{1-\frac{1}{2}}>2047.968$
$n=16$
(e) $S_{15}=2047.9375$
$S_{16}=2047.96875$
So $n=16$
29. (a) (i) $T_{l}=\$ 250$

$$
d=\$ 200
$$

$$
T_{10}=250+9 \times 200=2050
$$

(ii) $T_{l}=\$ 10$
$r=2$
$T_{10}=10 \times 2^{9}=5120$
(b) $S_{10}=\frac{10}{2}(250+2050)=11500$ OR $S_{10}=\frac{10}{2}\{2 \times 250+(10-1) \times 200\}=11500$
(c) Option One: $\$ 10000$

Option Two: $\$ 11500$
Option Three: $S_{10}=\frac{10\left(2^{10}-1\right)}{2-1}=10230$
Therefore, Option Two would be best.
30. (a) $u_{1}=135+7(1)=142$
(b) $u_{2}=135+7(2)=149$
$d=149-142=7 \quad$ (OR alternatives)
(c) $S_{n}=\frac{n[2(142)+7(n-1)]}{2}=\frac{n[277+7 n]}{2}=\frac{7 n^{2}}{2}+\frac{277 n}{2} \quad\left(=3.5 n^{2}+138.5 n\right)$
(d) $20 r^{3}=67.5 \Leftrightarrow r^{3}=3.375 \Leftrightarrow r=1.5$
(e) $\quad T_{7}=\frac{20\left(1.5^{7}-1\right)}{(1.5-1)}=643($ accept 643.4375$)$
(f) $\frac{20\left(1.5^{n}-1\right)}{(1.5-1)}>\frac{7 n^{2}}{2}+\frac{277 n}{2}$
$n=10$

